

67

Kardan Journal of Engineering and

Technology

 2 (1) 67–75

©2020 Kardan University

Kardan Publications

Kabul, Afghanistan

DOI: 10.31841/KJET.2021.13

https://kardan.edu.af/Research/Kardan_jour

nal_of_engineering_and_technology.aspx#

Amjad Khan

Muhammad Haleem

Addressing the Limitation of

JFLAP Mealy Machine for

Binary Increments

Abstract
JFLAP stands for java formal language and automata package has

developed by Susan H. Rodger and Thomas W. Finley at Duke University for
graduate and undergraduate students to simulate and test different
automatons using its graphical interface. Using JFLAP students can develop
the generation and recognition devices not only for regular languages but
also for non-regular languages as well. Moore and Mealy are two machines
which will produce output on any given input. But in some cases when a user
develops valid Mealy machine (MM) and enter the valid input string, JFLAP
produces wrong output. In this article, the discrepancy of JFLAP in term
results produces by Mealy machine (MM) is identified and solution has been
proposed using java language. It has been observed from that the solution
proposed in this article totally eliminate the problem of producing wrong
results especially in case of developing an incremental Mealy machine (MM).

Keywords: Moore machine, Mealy machine, Finite automata

Mr. Amjad Khan and Mr. Muhammad Haleem, are Assistant Professors at Faculty of Engineering and

Technology, Kardan University - Kabul, Afghanistan. <amjad@aup.edu.pk>,<mu_haleem@yahoo.com>

Article

Addressing the Limitation of JFLAP Mealy Machine for Binary Increments

68

Introduction

Students at undergraduate and graduate level study an important

course by the name of Theory of Computation. Usually students find this

course boring, tedious and not easy as unlike other computer science

courses, this course do not involve practical and they cannot check the

correctness of their work immediately. Usually students designed different

recognition devices/models manually which is not only time consuming job

but also can not verify their results instantly. Thanks to Susan H. Rodger and

her team for providing a simulation tool in the form of JFLAP where

students can design different automatons and check their functionalities by

a single click. This not only reduced design time of automatons but also

increase students interest in the course of computational theory [1].

Susan H. Rodger [2] stated in “JFLAP 7.0 License” that this simulation

tools evolved since 1993 and was originally developed at Duke University

with the support of National Science Foundation. This simulation tool is free

available online and can run both 32/64 bits operating systems. Java 1.4, 1.5

or latest version must install on PC to run JFLAP simulations. Most of its

recent version source code is available online but no modification is allowed.

Different version of this simulation tools available with 7.1 version released

on July 27, 2018. With some modification JFLAP 8.0 beta version is available

but not stable and completed [5].

 P. Chakraborty et-al [4] ranked JFLAP as most cultured and refined tool

for simulating automat in their work "Fifty years of automata simulation: a

review". They described this tool well documented, easy to use and possess

state of the art graphics.

D. Caugherty et-al [3] described JFLAP history in their work, "NPDA: A

Tool for Visualizing and Simulating Nondeterministic Pushdown Automata"

and stated that JFLAP development started in the early 90’s with limited

capabilities. With the passage of time more features were added to provide

a best platform for students to simulate the design of their automatons.

Using the latest version of JFLAP, students can simulate all generating

and recognition devices for formal languages ranging from type-3 to type-0.

The automatons for type-03 and type-02 languages are used just as

recognition devices and they cannot produce any output. At the same time

Mealy machine (MM) is an FSA (Finite State Automaton) that can produce

output on any given string. But if we design the correct MM for

incrementing binary digits and run the simulation, JFLAP will produce wrong

results. In this work the cause of problem is identified and solution has been

 Khan & Haleem (2020)

69

provided so that if incorporate in the present version of JFLAP will remove

discrepancy related to MM.

2. Related Work

Modification applied to JFLAP that let the students write programs

using java to aid more features to the existing JFLAP. This improvement

allow student’ to add-up more capabilities to the existing JFLAP they need

[6].

This is insisted that the data stored in tools that can be used online can

help other new in subjects or junior instructed to solve the problems they

are facing in that domain. This argument has been tested in two webs

available several tools. Most experiments done on JFLAP and Logic-ITA.[7]

The overall look and feel of the JFLAP tool have been changed in-order

to make it more user friendly. So that “easy to work” property of the tool

will motivate the students to take more interest in the field of problem

automation [8].

Process communicative model has been proposed to add with JFLAP

to show the flow chart like layout of written script. This approach can

precisely describe the mechanism behind implementation to the readers

[9].

The surveys regarding JFLAP shows that student can easily learn the

key concepts about the theories of automation with the help of JFLAP. So,

more engagement exists of automata theory with JFLAP. [10]

Work has been carried out on JFLAP to present extensions that could

enhance the weight of JFLAP as a learning for students and key guide for

instructors these enhancements to the tool capable this in finite automata.

Here the authors contributed for instructors to have the see the activity log

recorded by JFLAP. To know about students’ trials and then assist the

students in the problems of automata construction. Research contributed

for student to have a simple and native means to show the correction tips

while they are constructing FAs [11].

Automata theory covers several machines. Among those Turing

machines are working as dominant computational machines. These have

similarity to algorithms; these machines are bases for real computers.

Building Turing Machines to cover wide range of numerical and non-

numerical problems, is a remarkable job. Thus, a Universal Turing Machine

(UTM) has been introduced [12].

3. Existing Problem with JFLAP

Addressing the Limitation of JFLAP Mealy Machine for Binary Increments

70

The decades of work have been carried out over JFLAP. The literature

review shows that JFLAP is tightly coupled automata and will be available as

the most interactive tool for many years to come. As mealy machine has its

own significance in automata theory. This research identified an active

problem with mealy machine in JFLAP. The incrementing mealy machine

does not return the correct result as it starts the incrementing process from

the left. The actual increment process needs to be from the right. The above

given literature review and the best of knowledge regarding JFLAP confirms

that the problem has not been addressed so far. The problem has been

shown in the given figure1, figure 2 and figure 3. The problem is clearly

demonstrated her by inspecting the given JFLAP outputs for the given

inputs. It can be easily pointed out that the JFLAP output are not to the point

as incrimination has been performed from the left which is incorrect. The

basic arithmetic principals of binary numbers allow the increment from the

right side only.

Figure 1:

Figure 2:

 Khan & Haleem (2020)

71

Figure 3:

4. Proposed Solution for AMI Mealy Machine

The proposed algorithm is designed to the address the problem of

incrementing mealy machine. This solution work will for unlimited input

string. This technique provides the validation mechanism as well. This

research contributes the solution to overflow bit as well. For example, the

mealy machine converts the input of all 1’s to all 0’s. But our solution cover-

up this active problem significantly. According to procedure of this solution.

It first read the user input. Validate the input for the validity of input binary

number. If the input is not in proper binary form the user will be prompted

for. In case of no issue with input string the string will parsed to a character

array to handle the individual bits.

After the input string comes ready in array the increment process will

be initiated from right most bit. The bit access pointer will start traversing

the array from the position (n-1). The bits will be accessed one by one

toward left. If the pointed bit is 0, it will be changed to 1 and the rest of the

bits will be unchanged and so the result. In case the current bit is 1 then it

will be changed to 0 with a carry of one. The carry will be counted with the

adjacent bit to the left of the input string. And the procedure will continue

in this manner.

In case all zero’s encountered in the result after bits traversal process,

then “1” will be appended to the left of the resultant string.

5. Algorithm AMI Mealy Machine

1. BEGIN
2. [INPUT]

INPUT_STRING=INPUT_VALUE
3. [CONVERT INPUT_STRING TO ARRAY]
4. INPUT_ARRAY [] =INPUTSTRING
5. [CHECK THE VALIDITY OF STRING FOR BINARY]

 IF (VALID BINARY) THEN
 IS_BINARY = TRUE;
ELSE
 IS_BINARY = FALSE;

6. [INCREMENT]
7. IF (IS_BINARY = = TRUE) THEN

OUTPUT=INPUT_ARRAY+1

Addressing the Limitation of JFLAP Mealy Machine for Binary Increments

72

IF (OUTPUT= “ALL ZEROS”) THEN

[APPEND 1 TO THE LEFT OF OUTPUT]

OUTPUT=CONCAT (1, OUTPUT)

ELSE
PRINT ERROR_MEESAGE
GOTO STEP 9

8. [DISPLAY RESULT]
PRINT OUTPUT

9. END

6. System’s Flowchart

7. Implementation Detail

As the JFLAP is developed using JAVA. So, in order to avoid possible

issue of cross-platform compatibility, the technique is implemented in java.

Exception handling has been used in the development to avoid the

unexpected failure of the system. The unexpected failure can be cause from

incorrect user inputs or some internal runtime interrupt. So, robustness

added to the system by utilizing the exception handling feature.

 Khan & Haleem (2020)

73

Regarding the GUI setup the Javax.Swing and AWT has been applied. The

JFrame class has been extended for adding the components to the

application form. To make the GUI interactive, the action listener interface

implemented here. Static bounds used to manage the components

positions.

The below given test bed has been used for implementation.

IDE: JCreator 4.0

Compiler: J2SDK 9.0

Operating System: windows 2010

System: Core i7

RAM: 8GB.

Validation rules are applied over the interface input text field. It will

accept proper binary number only. So, the incorrect entry as shown here in

figure 4 has been rejected and the user is prompted with a diagnostic

informative message.

Figure 4: AMI Mealy Machine

The valid binary number can be incremented accurately without any issue.

Here the accurate result delivered by our implemented technique. As this

research identified the problem with existing JFLAP’s Mealy machine. The

problem is that it increments the input from left side. Means for input ‘000’

it produces ‘100’, which totally incorrect result. The correct one needs to be

001. This scenario is demonstrated by figure 5 given below.

Figure 5: AMI Mealy Machine

Addressing the Limitation of JFLAP Mealy Machine for Binary Increments

74

When the system gets an input of all 1’s of length in the produced final result

passes from two phases. First all 1’s will be converted to all zero’s as per

mealy machine pre-define procedure. In order to have the correct expected

result, in second phase 1 will be appended to the left of the first phase result.

Thus, resultant output will have a length of n+1. This point has been

demonstrated by figure 6. Where the input ‘1111’ all 1’s of length n=4 given

the result ‘10000’ of length n+1=5.

Figure 6: AMI Mealy Machine

The implemented system operates will for any kind and limit of input binary

strings. Another snapshot of the system has been provided in figure 7.

Figure 7: AMI Mealy Machine

8. Conclusion and Future Work

After analyzing results of new accuracy measures introduced in this work,

it has been observed that incrementing Mealy machine produced not only

accurate results but also there is no restriction on the length of strings to be

added.

Furthermore, it has been observed during this work that the problem of

incrementing the strings by incrementing Mealy machine in JFALP version

7.0 was because of coding. Programmer not considered addition of bits

from the right of string, rather it was adding bits from left of string, that

produced wrong results. This problem has been overcome in this work.

Researcher should also check and analyze Turing Machine while simulating

them for the solution of real-world problems.

 Khan & Haleem (2020)

75

References

[1] Susan H. Rodger; Eric Wiebe; Kyung Min Lee; Chris Morgan; Kareem Omar;
Jonathan Su, "Increasing Engagement in Automata Theory with
JFLAP". Fortieth SIGCSE Technical Symposium on Computer Science
Education: 403–407, 2009.

[2] Susan H. Rodger. "JFLAP 7.0 LICENSE". Retrieved 2 October 2016.

[3] D. Caugherty; S. H. Rodger, "NPDA: A Tool for Visualizing and Simulating
Nondeterministic Pushdown Automata". DIMACS Workshop March 12–14,
1992: 365–377, 1992.

[4] P. Chakraborty; P.C. Saxena; C. P. Katti, "Fifty years of automata simulation: a
review". ACM Inroads. 2 (4): 59–70, 2011.

[5] Paul J. Using jFlap to engage students and improve learning of computer
science theory: tutorial presentation. Journal of Computing Sciences in Colleges.
1;31(2):145-8, 2015.

[6] Verma, Rakesh, “A visual and interactive automata theory course
emphasizing breadth of automata”. ACM Sigcse Bulletin, 2005.

[7] Merceron, Agathe & Yacef, Kalina, “Web-based learning tools: storing usage
data makes a difference”, 104-109, 2007.

 [8] M. Lucas, Joan & Jarvis, Jonathan, “Incorporating transformations into JFLAP
for enhanced understanding of automata”, 14-18, 2008.

[9] C. M. Baeten, J & J. L. Cuijpers, P & Luttik, Bas & Van Tilburg, Paul, “A Process-
Theoretic Look at Automata” 1-33, 2010.

[10] Rodger, Susan & Wiebe, Eric & Min Lee, Kyung & Morgan, Chris & Omar,
Kareem & Su, Jonathan, “Increasing engagement in automata theory with
JFLAP” SIGCSE'09 - Proceedings of the 40th ACM Technical Symposium on
Computer Science Education. 41. 403-407, 2009.

[11] S, Vinay & Prabhu, Akshata & Puranik, Kavitha & Antin, Lusi & Kumar, Viraj.
(2015). JFLAP Extensions for Instructors and Students. Proceedings - IEEE 6th
International Conference on Technology for Education, T4E 2014. 140-143.
10.1109/T4E.2014.22.

[12] Pradhan, Tribikram, “Enhancement of Turing Machine to Universal Turing
Machine to Halt for Recursive Enumerable Language and its JFLAP
Simulation”, International Journal of Hybrid Information Technology, 8. 193-202,
2015.

